
Fast and Robust Trajectory Generation for
Cartesian Path-following Problems of Redundant Manipulators

Minsung Yoon†, Mincheul Kang†, Daehyung Park†‡ and Sung-Eui Yoon†‡

Abstract— It is an important problem that quickly finds a
joint trajectory so that an end-effector path of the trajectory
precisely follows the Cartesian path defined in SE(3). However,
as the length of the considered path or the degree of freedom
of the robot increases, it becomes very complicated to find a
trajectory that satisfies necessary constraints such as continuity,
mechanical limits, singularity, and collision avoidance. Therefore,
we present a learning-based trajectory generation framework
that can rapidly produce a joint trajectory while satisfying
constraints with generalizability in the configuration of the
external environment and the path. Our Markov decision process
formulation enables our trained policy to generate trajectories
with a lower constraint violation rate than the three other
trajectory generation baseline methods.

I. INTRODUCTION

A path-following problem of manipulators is an important
issue for real-world tasks in remote control or other domains.
Given a fully constrained (i.e., 6-dimensional) path, we aim
to find a configuration-space trajectory for kinematically
redundant manipulators taking into consideration a variety of
trajectory constraints, such as joint continuity, smoothness as
well as potential collision in the environment.

Traditionally, inverse kinematics (IK) has been utilized
to find a joint configuration given an end-effector pose [1].
However, the IK approach does not consider the constraints
that arise when tracing the path, leading to a situation where
a valid configuration no longer exists. Therefore, global
search approaches have built a discrete layered graph with
IK solutions computed along the path to search feasible
trajectories [2]. Although these approaches are asymptotically
optimal, they are quite slow since the redundant manipulator
has infinite IK solutions even at one end-effector pose. As
trajectory optimization has been widely adopted for generating
a feasible trajectory, previous method [3] append constraints
on the end-effector poses to follow the path. However, an
optimized result is highly sensitive to an initial guess, i.e.,
initial trajectory, since these constraints cause many local
minima and the local nature of the optimization method.

To balance a generation time and the trajectory quality, we
amortize the online computation to satisfy the constraints by
training our neural network policy offline using reinforcement
learning (RL) with a variety of path-following problems and
demonstrations. Our method generates the trajectory sequen-
tially by selecting the extension direction in configuration

†M. Yoon, M. Kang, D. Park, and S. Yoon are with the
School of Computing, Korea Advanced Institute of Science and
Technology, South Korea;{minsung.yoon, mincheul.kang,
daehyung}@kaist.ac.kr, and sungeui@kaist.edu.
‡D. Park and S. Yoon are co-corresponding authors.

space based on the path and environment information starting
from an initial configuration. To learn such behavior, we
formulate the path-following problem as a finite-horizon
Markov decision process (MDP) by defining a unified reward
function composed of the task, imitation, and constraint-
relevant rewards. In addition, for generalizability over diverse
path-following problems (e.g., paths, start configurations, and
environments), we generate diverse training environments.

We experimented with a 7 DoF Fetch robot and compared
our work with the conventional IK method and a supervised
learning-based method as another learning-based method. As a
result, it showed faster generation time and a lower constraint
violation rate with the improved null-space continuity.

II. RL-BASED TRAJECTORY GENERATION

A. Notations

Researchers often represent the path in Cartesian space as a
sequence of poses X = [x0, x1, ..., xN−1] ∈ X evenly spaced
in time, where N is the number of poses in the path, X is
the space of paths, and each pose is a pair of position (∈ R3)
and orientation (∈ SO(3)). Likewise, the joint trajectory is
a sequence of joint configurations ξ = [q0, q1, ..., qN−1] ∈ Ξ,
where q ∈ Rd is a configuration of a d DoF manipulator and
Ξ is the Hilbert space of joint trajectories. The d is greater
than 6 in the case of redundant manipulators in SE(3).

B. Formulation of MDP

We first formulate a path-conditioned MDP as MX =
⟨S,A,RZ , T ,Q0, γ⟩X∼P(X), where X is a target path
sampled from a distribution of paths P(X), S is a set of states,
A is a set of actions, RZ : S × A → R is a time-varying
reward function, where Z = {z ∈ N0|0 ≤ z ≤ N − 1}
is a set of time steps, T : S × A → S is a deterministic
transition function, Q0 is a set of start configurations q0,
and γ ∈ [0, 1) is a discount factor. We sample the target
paths X within a restricted operation range with the arm’s
length in the task space. In the case of Q0, we sample
IK solutions at the first pose x0 in X . The policy trained
on the MDP MX synthesizes a high quality trajectory ξ
by sequentially expanding the trajectory in a direction that
satisfies the constraints. To generalize the policy over the
path and obtain a unified policy, we define a multi-path RL
objective function:

maximize
π

EX∼P(X)

[
E(si,ai)∼ρπ

q0∼Q0

[
N−1∑
i=0

γi · Ri(si, ai)

]]
,

(1)



Hello Rotation Zigzag Square S Random w/o obs Random w/ obs

Fig. 1. Visualization of five specific and two exemplar random target paths (red lines) used in evaluations. Orange arrows indicates the progress direction
of the path. Blue lines are the end-effector paths calculated from RL-TG’s joint trajectories via forward kinematics. In Square and S problems, the original
color of the robot represents the initial configurations, and the Yellow trails indicate that the generated trajectories satisfy collision-avoidance constraints.

where ρπ is the trajectory distribution given the deterministic
transition function T and a stochastic policy π(ai|si). Then,
we find an optimal policy π∗ where π∗ : S × A → R≥0

maximizes the objective function.
1) State and Action space: As the state space S, we

consider the 3D occupancy grid for recognizing the surround-
ing environment, the joint values and the poses of links of
the robot, and the poses up to 6 steps ahead of the target
paths for near-sight behavior. We also define an action as a
configuration difference, ai = ∆qi ∈ Rd, and qi+1 = qi+∆qi
given the deterministic T . Therefore, the policy sequentially
extends the trajectory for every step to compose the whole
trajectory of length N .

2) Reward formulation: A multi-objective reward function
is divided into three main terms. First, a task reward is to
encourage the agent to follow the target path X . Second, an
imitation reward is to make the policy learn the optimized
null-space motion depicted in the demonstration. The last
reward term is the constraint-related reward function that
penalizes collision, joint-limit violation, singularity condition,
and early termination states to satisfy constrains.

III. RESULTS

We prepared five specific (‘Hello’, ‘Rotation’, ‘Zigzag’,
‘Square’ and ‘S’) and one random target path benchmark set
to show generalizability over external environments and paths.
As baselines, Linear returns a linearly interpolated trajectory
in joint space, Greedy [3] efficiently uses IK solutions, and
BC-TG is the same as ours except learning method with
supervised learning. We call our method as RL-TG.

Fig. 1 shows the trajectories synthesized by RL-TG for each
exemplar benchmark problem. Fig. 2 shows the comparative
analysis of the trajectory generation methods in terms of four
quality metrics: a path-following pose error and a trajectory
smoothness to measure a trajectory quality, a constraint
violation rate considering the collision-free and joint velocity
limit violation constraints, and a generation time. RL-TG, a
learning-based function approximation method, has a slight
error with the target path when looking at the end-effector
path of the generated trajectory, but shows great advantages in
null-space continuity (joint smoothness) and generation time,
which leads to a low constraint violation rate. In Fig. 2-(d),
the reason why the Linear’s constraint violation is zero is
that the generated trajectory does not move at all since the
start and end poses of the paths are the same.

Fig. 2. Comparative analysis of the four trajectory generation methods
in five types of simulated environments. The x- and y-axes are the type of
benchmark problems and the performance metrics, respectively.

IV. CONCLUSION

We presented a reinforcement learning-based trajectory
generation (RL-TG) method that quickly finds a low-cost
trajectory of redundant manipulators for path-following prob-
lems. We have shown the lower constraint violation rate and
fast generation time of RL-TG qualitatively and the generated
trajectories qualitatively in simulation experiments. One future
direction is to post-process the generated trajectories using
trajectory optimization techniques to guarantee the generated
trajectories’ feasibility and to reduce the path-following error.

ACKNOWLEDGEMENT

This work was supported by the National Research Founda-
tion of Korea (NRF) grant funded by the Korea government
(MSIT) (No. 2021R1A4A1032582).

REFERENCES

[1] Patrick Beeson and Barrett Ames, “TRAC-IK: An open-source library for
improved solving of generic inverse kinematics”, in IEEE International
Conference on Humanoid Robots. IEEE, 2015, pp. 928–935.



[2] Rachel Holladay, Oren Salzman, and Siddhartha Srinivasa, “Minimizing
task-space frechet error via efficient incremental graph search”, RA-L,
vol. 4, no. 2, pp. 1999–2006, 2019.

[3] Mincheul Kang, Heechan Shin, Donghyuk Kim, and Sung-Eui Yoon,
“TORM: Fast and accurate trajectory optimization of redundant manipu-
lator given an end-effector path”, in IROS. IEEE, 2020, pp. 9417–9424.


